Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

M. M. Govind, ${ }^{\text {a }}$ J. Govindaraj, ${ }^{\text {a }}$
V. Rajakannan, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$ *
Moon-Jib Kim, ${ }^{\text {b }}$ P. C. Srinivasan ${ }^{\text {c }}$
and S. Kannadasan ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\mathbf{b}}$ Department of Physics,
Soonchunhyang University, PO Box 97 Asan Chungnam 336-600, South Korea, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.014 \AA$
R factor $=0.056$
$w R$ factor $=0.135$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Bromo- N -[3-bromo-1-(phenylsulfonyl)-indol-2-ylmethyl]-4-methylaniline

The title compound, $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, crystallizes in the centrosymmetric space group $P \overline{1}$ with two molecules in the asymmetric unit. The two crystallographically independent molecules differ in the orientation of the aniline substituent with respect to the indole moiety. In both molecules, the S atom shows a distorted tetrahedral geometry. The molecular structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intramolecular interactions and the molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Indoles have been of interest for many years, since a large number of natural products contain these heterocyclic nuclei and they are found in numerous commercial products including pharmaceuticals, fragrances and dyes (Padwa et al., 1999). These types of compounds are also used as antimicrobial and anti-inflammatory agents (El-Sayed et al., 1986). Sulfonamide-containing drugs behave as diuretics (Crawford \& Kennedy, 1959; Camerman \& Camerman, 1975). Investigations using spectroscopic methods have revealed the DNAbinding activity of the indole molecule (Sivaraman et al., 1996). The indole ring system is also found to occur in plants (Nigović et al., 2000); for example, indole-3-acetic acid is a naturally occurring plant-growth hormone that controls several plant-growth activities (Moore, 1989; Fargasova, 1994). Against this background, and in order to obtain detailed information on its molecular conformation in the solid state, an X-ray study on the title compound, (I), was carried out.

The asymmetric unit of (I) consists of two crystallographically independent molecules, viz. A and B. The corresponding bond lengths and angles of A and B agree with each other, but the orientation of the aniline substituent with respect to the indole moiety in A is different from that in B. This can be seen from the $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{C} 9-$ $\mathrm{N} 2-\mathrm{C} 10$ torsion angles of $95.5(8)\left[-60.5(10)^{\circ}\right.$ in $\left.B\right]$ and $176.5(6)^{\circ}\left[-83.2(9)^{\circ}\right.$ in $\left.B\right]$, respectively. The geometry of molecule A agrees with that of a closely related molecule, namely 2 -bromo- N -[3-bromo- N -(phenylsulfonyl)indol-2-ylmethyl]aniline, (II) (Govind et al., 2002).

Received 2 December 2002
Accepted 19 December 2002
Online 17 January 2003

Figure 1
A view of the two crystallographically independent molecules in the asymmetric unit. Displacement ellipsoids are shown at the 30% probability level.

The torsion angles $\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1-\mathrm{C} 1 \quad[-46.0$ (6) and $-48.2(6)^{\circ}$ in A and $\left.B\right]$ and $\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 17-\mathrm{C} 22[-156.1$ (6) and $-164.8(6)^{\circ}$] describe the conformation of the phenylsulfonyl group with respect to the indole moiety; the mean planes through the indole moiety and the phenyl ring bound to the sulfonyl group form a dihedral angle of $84.8(4)^{\circ}$ in molecule A and 86.5 (4) ${ }^{\circ}$ in molecule B. In A, the phenyl ring of the aniline substituent forms a dihedral angle of $84.9(4)^{\circ}$ with the indole moiety, while in B this value is $77.8(4)^{\circ}$. In both molecules, the S atom is in a distorted tetrahedral configuration. As reported previously for related phenylsulfonylindole derivatives (Sankaranarayanan et al., 2001; Govind et al., 2002; Seshadri et al., 2002), significant distortion from the ideal values is observed for $\mathrm{O}-\mathrm{S}-\mathrm{O}$ and $\mathrm{N}-\mathrm{S}-\mathrm{C}$ angles (Table 1). The relatively large values of the $\mathrm{C}-\mathrm{N}$ distances in the indole moiety are due to the electron-withdrawing character of the phenylsulfonyl group. The molecular structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ intramolecular interactions (Table 2). The observed intramolecular interactions are similar to those reported for (II) (Govind et al., 2002). A short $\mathrm{Br} \cdots \mathrm{Br}$ contact of 3.500 (2) \AA is observed between atoms $\operatorname{Br} 2 A$ and $\operatorname{Br} 1 B$. The molecular packing in the crystal is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Experimental

A solution of 1-phenylsulfonyl-2-bromomethyl-2-bromoindole ($4.29 \mathrm{~g}, 10 \mathrm{mmol}$) and 2-bromo-4-methylaniline (2 equivalents) in dry DMF (25 ml) containing finely powdered $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{mg})$ was stirred at room temperature for 12 h . The reaction mixture was then poured on to ice (200 g) and the solid formed was filtered off immediately and washed with an excess of water. The crude product was dried over CaCl_{2} and recrystallized from ethyl acetate-hexane (1:9) to give colourless crystals of the title compound.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	$Z=4$
$M_{r}=534.26$	$D_{x}=1.677 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=12.436$ (3) A	Cell parameters from 25
$b=12.715$ (3) \AA	reflections
$c=16.073$ (3) A	$\theta=1.4-25.0^{\circ}$
$\alpha=70.13$ (3) ${ }^{\text {d }}$	$\mu=3.95 \mathrm{~mm}^{-1}$
$\beta=69.23$ (3) ${ }^{\circ}$	$T=293$ (2) K
$\gamma=66.22$ (3) ${ }^{\circ}$	Prism, colourless
$V=2116.2(10) \AA^{3}$	$0.40 \times 0.30 \times 0.30 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.053$
diffractometer	$\theta_{\text {max }}=25.0^{\circ}$
Non-profiled $\omega / 2 \theta$ scans	$h=0 \rightarrow 14$
Absorption correction: ψ scan	$k=-13 \rightarrow 15$
(North et al., 1968)	$l=-17 \rightarrow 19$
$T_{\text {min }}=0.301, T_{\text {max }}=0.384$	3 standard reflections
7786 measured reflections	frequency: 300 min
7411 independent reflections	intensity decay: 1%

3320 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.135$
$S=0.95$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0576 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.63$ e \AA^{-3}
$\Delta \rho_{\min }=-0.47 \mathrm{e} \AA^{-3}$

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

$\mathrm{N} 1 A-\mathrm{C} 8 A$	$1.421(8)$	$\mathrm{N} 1 B-\mathrm{C} 1 B$	$1.398(8)$
$\mathrm{N} 1 A-\mathrm{C} 1 A$	$1.432(9)$	$\mathrm{N} 1 B-\mathrm{C} 8 B$	$1.442(9)$
$\mathrm{N} 2 A-\mathrm{C} 10 A$	$1.391(8)$	$\mathrm{N} 2 B-\mathrm{C} 10 B$	$1.379(9)$
$\mathrm{N} 2 A-\mathrm{C} 9 A$			$1.448(9)$
$\mathrm{O} 1 A-\mathrm{S} 1 A-\mathrm{O} 2 A$	$119.9(3)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{O} 1 B$	$119.7(3)$
$\mathrm{N} 1 A-\mathrm{S} 1 A-\mathrm{C} 17 A$	$104.9(3)$	$\mathrm{N} 1 B-\mathrm{S} 1 B-\mathrm{C} 17 B$	$105.6(3)$
$\mathrm{O} 2 A-\mathrm{S} 1 A-\mathrm{N} 1 A-\mathrm{C} 1 A$	$-46.0(6)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{N} 1 B-\mathrm{C} 1 B$	$-48.2(6)$
$\mathrm{C} 10 A-\mathrm{N} 2 A-\mathrm{C} 9 A-\mathrm{C} 8 A$	$176.5(6)$	$\mathrm{C} 10 B-\mathrm{N} 2 B-\mathrm{C} 9 B-\mathrm{C} 8 B$	$-83.2(9)$
$\mathrm{N} 1 A-\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{N} 2 A$	$95.5(8)$	$\mathrm{N} 1 B-\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{N} 2 B$	$-60.5(10)$
$\mathrm{O} 2 A-\mathrm{S} 1 A-\mathrm{C} 17 A-\mathrm{C} 22 A-156.1(6)$	$\mathrm{O} 2 B-\mathrm{S} 1 B-\mathrm{C} 17 B-\mathrm{C} 22 B$	$-164.8(6)$	

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
$C g(\mathrm{PS})$ denotes the centroid of the phenyl ring bound to the sulfonyl group and $C g(\mathrm{PA})$ denotes that of the aniline ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 2 A$	0.96	2.35	$2.956(11)$	120
$\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{O} 1 A$	0.96	2.34	$2.894(10)$	116
$\mathrm{~N} 2 A-\mathrm{H} 2 A N \cdots \mathrm{Br} 2 A$	0.90	2.64	$3.080(7)$	111
$\mathrm{C} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 2 B$	0.96	2.36	$2.954(10)$	119
$\mathrm{C} 9 B-\mathrm{H} 9 D \cdots \mathrm{O} 1 B$	0.96	2.48	$2.845(11)$	102
$\mathrm{~N} 2 B-\mathrm{H} 2 B N \cdots \mathrm{Br} 2 B$	0.90	2.57	$3.044(7)$	114
$\mathrm{~N} 2 B-\mathrm{H} 2 B N \cdots \mathrm{O} 1 B$	0.90	2.32	$2.832(11)$	116
$\mathrm{C} 16 A-\mathrm{H} 16 C \cdots \mathrm{Br} 2 B^{\mathrm{i}}$	0.96	2.88	$3.772(14)$	155
$\mathrm{C} 20 A-\mathrm{H} 20 A \cdots \mathrm{O} 2 B^{\text {ii }}$	0.96	2.57	$3.217(10)$	125
C5 $A-\mathrm{H} 5 A \cdots C g(\mathrm{PS})$	0.96	2.78	$3.680(9)$	157
C3B-H3B $\cdots C g\left(\right.$ PA $^{\mathrm{ii})}$	0.96	2.89	$3.763(13)$	151

Symmetry codes: (i) $x-1, y, 1+z$; (ii) $1-x, 1-y,-z$.

All the H atoms were fixed geometrically and allowed to ride on their carrier atoms. Owing to the poor diffraction quality of the crystal, the ratio of observed to unique reflections is low (45\%).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

DV thanks the DST for a research grant.

References

Camerman, A. \& Camerman, N. (1975). Can. J. Chem. 53, 2194-2198.
Crawford, J. D. \& Kennedy, G. C. (1959). Nature (London), 183, 891-892.
El-Sayed, K., Barnhart, D. M., Ammon, H. L. \& Wassel, G. M. (1986). Acta Cryst. C42, 1383-1385.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.

Fargasova, A. (1994). Bull. Environ. Contam. Toxicol. 52, 706-711.
Govind, M. M., Govindaraj, J., Rajakannan, V., Velmurugan, D., Kim, M.-J.,
Srinivasan, P. C. \& Kannadasan, S. (2002). Acta Cryst. E58, o1241-o1243.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg. Germany.
Moore, C. T. (1989). Biochemistry and Physiology of Plant Harmones. ch. 2, p. 33. New Delhi: Narosa Publishing House.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nigović, B., Antolic, S., Kojic Prodic, B., Kiralj, R., Magnus, V. \& SalopekSondi, B. (2000). Acta Cryst. B56, 94-111.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Padwa, A., Brodney, M. A., Liu, B., Satake, K. \& Wu, T. (1999). J. Org. Chem. p. 64. 3595-3607.

Sankaranarayanan, R., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Narasinga Rao, S., Kannadasan, S. \& Srinivasan, P. C. (2001). Acta Cryst. C57, 569-571.
Seshadri, P. R., Velmurugan, D., Govindaraj, J., Kannadasan, S., Srinivasan, P. C., Shanmuga Sundara Raj, S., Fun, H.-K. \& Kim, M. J. (2002). Acta Cryst. C58, o700-o703.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Seetharaman, J. (1996). J. Mol. Struct. 385, 123-128.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

